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Abstract

In this paper, we propose a method of generating a video

linked to sound from a single image and a few seconds of

sound while maintaining the appearance of the image. Con-

ventional video generation methods from sound require key

points extraction related to the sound in each object, such

as the mouth in speech and arms in musical instrument per-

formance. They can not be applied to objects whose shape

changes significantly like fireworks. The proposed method

can generate a video without extracting specific key points

from images. We experimented not only the mouth shape

and body pose of human treated in the conventional ways,

but also fireworks and sea waves where it is difficult to de-

sign key points.

1. Introduction

There are many phenomena in which movement and

sound are linked to each other, like human speech, musical

instrument performance, fireworks, or sea waves. There is a

demand for making a video that motion and sound are syn-

chronized. This is because it is recognized in combination

by sight and sound. In recent years, focusing on the rela-

tionship between sound and motion, methods of generating

a video using sound has been proposed. Suwajanakorn et al.

[10] proposed a method to generate continuous images with

realistic movement of the mouth by estimating the mouth

shape from human voice. Shlizerman et al. [8] predicts

how bones move from a sound by learning the relationship

between instrumental performance and human hand move-

ment. Then they applied predicted bone information to the

3D avatar to generate a video. These methods can be di-

vided into a mechanism for predicting motion from sound

and a mechanism for generating an image or 3D avatar for

motion by using key points such as mouth shape or bone

for correlating sound and motion. Therefore, it is possible

to generate realistic videos. When applying these methods

to non-human objects, designing key points is inevitable for

each target. In addition, it can not be applied to objects

whose key points are difficult to design, such as fireworks

and sea waves whose shape is greatly deformed.

Some methods [12, 7, 11] have been proposed to gen-

erate a video using GAN [2] without key points. In these

methods [12, 7], since one latent variable corresponds to

the video one by one, the video has a fixed length, and each

corresponds to another latent variable even if the speed is

different with the same motion. Tulyakov et al. [11] pro-

posed a method for generating a video by separating video

component into the motion and the content. By separating

the latent variable space by the content and the motion, it is

possible to fix the motion and change the content, and vice

versa. Although GAN-based methods can generate a con-

tinuous video without key points, the generated video does

not contain sound, as sound information is not considered.

In this paper, we propose a GAN-based video generation

method for general objects that move in conjunction with

sound. Our proposed method generates a video in which

the image region corresponding to the input sound moves

according to the sound. The feature of the movable part

corresponding to the sound is learned, by making the fea-

ture of temporal change of sound correspond to the image

for each frame. Correlating not the sound but the temporal

change of the sound with the image enables to generate a

video for the phenomenon with many silent sections such

as pulse like sound. In addition, learning the appearance of

the image without defining key points specific to the target

makes it possible to create a video that retains the appear-

ance of the input image, even for objects whose key points

design is difficult.

2. Proposed Method

We introduce a method uses GAN to generate videos by

using visual information obtained from a single image and

information on temporal change in sound obtained from a

few seconds of sound. As shown in Figure 1, the proposed

network consists of Sound Encoder (SE), Generator (G),

and Discriminator (DI , DV ). First, SE extracts the fea-

ture of temporal change of sound with the sampling rate of

the frames. Then, G generates an image for each frame

from the obtained features from the SE and the input im-

age. DI discriminates the spatial naturalness between the

generated image and the real image. Finally, DV discrim-

inates whether the temporal change of the generated con-

tinuous frames is natural. The proposed method does not

require feature points specified to certain object, which al-
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(a) Outline of the proposed network （b）Sound Encoder

Figure 1. Proposed Network.

lows sound and target in general to be applicable.

2.1. Sound Feature Extraction

In order to generate a video synchronized with sound, it

is necessary to associate sound with motions. In the pro-

posed method, sound information is associated with each

image by Fourier transformation of the sound waveform

according to the sampling rate of the frames. For videos

with a sound sampling rate of FS [Hz] and an image sam-

pling rate of FI [fps], short-time Fourier transform (STFT)

is performed for FI/FS [s], and we get the spectrogram

(Sp = {St
p}t=1,...,N ). The spectrogram represents the in-

tensity of each frequency of sound over time. The ob-

tained Sp contains a silent interval, and the spectrogram

in the silent interval does not contain necessary informa-

tion to predict motion. Therefore, it is not appropriate to

associate Sp directly with the images. In this paper, it is

possible to extract information for predicting motion even

in silent sections, by focusing on the temporal change of

the spectrogram. The feature ({St
f}t=1,...,N ) for temporal

change of sound is defined for each frame, by inputting the

obtained St
p into Bidirectional LSTM (BLSTM) [3] for each

FI/FS [s]. We use BLSTM as SE because the entire input

sound is given in advance. BLSTM is a network that propa-

gates information bidirectionally from the past to the future

and from the future to the past. By using information in

both directions, it becomes possible to extract the feature

of movement until the sound is emitted, not only for con-

tinuous sound but also for single sound such as pulse like

sound. The initial values of hidden state of BLSTM
−→
h0 and

←−
h0 are set with 0.

2.2. Image Generation

An image Ṽ t is generated by G from a single input im-

age I and a feature St
f . We use U-Net [6] for G to generate

a video that retains the appearance of the input image. In

order to generate natural video, spatial naturalness of each

image and temporal naturalness in continuous images are

important. U-Net can generate an image including spatial

information of the input image by referring to the informa-

tion in the middle layer during encoding and decoding. The

generated images are discriminated by two D as Tulyakov

et al. [11] proposed. DI discriminates one image and DV

discriminates the naturalness of multiple images. There-

fore, it can be divided into DI specializing in space and

DV specializing in time. By using two D, the naturalness

of static image feature and the naturalness of motion feature

can be determined separately, and then more realistic video

can be generated.

2.3. Training

In this paper, we define the following loss function L

L = LGAN + Lrec (1)

G and SE are trained to minimize L. DI and DV are

trained to maximize L. LGAN is defined by the following

equation.

LGAN = λadv-ILadv-I + λadv-V Ladv-V (2)

λadv-I and λadv-V are the weights of how DI and DV are

considered. Ladv-I and Ladv-V are defined by following

equations.

Ladv-I = EV∼pdata
[logDI(Γ1(V ))]

+ EṼ∼p
Ṽ

[

log(1−DI(Γ1(Ṽ )))
] (3)

Ladv-V = EV∼pdata
[logDV (ΓT (V ))]

+ EṼ∼p
Ṽ

[

log(1−DV (ΓT (Ṽ )))
] (4)

V means a video in the dataset, Ṽ means the generated

video, and ΓT (·) represents T images of continuous images
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(Γ1(·) means one image of continuous images). Lrec is de-

fined by the following formula. The reconstruction error is

measured at L1 loss for all frames of the generated video

and the real video.

Lrec = ‖V − Ṽ ‖1 (5)

3. Experiment

To show the effectiveness of our method, two factors are

required to verified. One is if it is applicable for the target

used in conventional method using key points. The other

is if it is applicable for the target in which the key points

are difficult to design. Therefore, we selected human mouth

and hands that can acquire key points, and fireworks and

sea waves that cannot define key points. In this experiment,

four types of targets are trained separately.

3.1. Dataset

The existing video datasets [9, 1, 4] contain sounds that

are not related to motion, so it is not suitable for verify-

ing the effectiveness of the proposed method. Therefore,

we construct the dataset of videos with correspondence be-

tween sound and motion. There are three conditions for

data.

• The sound and the image are corresponding each other.

• There is no sound unrelated to the movement.

• The camera is fixed.

We shot videos in which five people pronounced the vow-

els “a”, “i”, “u”, “e”, and “o”, and videos of seven peo-

ple clapping their hands above their heads as they moved

their hands up and down. We collected fireworks and sea

videos published on YouTube. The sound sampling rate is

FS = 44, 100 [Hz], and the frame sampling rate is FI = 30
[fps]. We created data for each video by the following pro-

cedure. First, we randomly cut out four seconds from a

video. Next, videos are separated into 120 frames and four

seconds of sound. After cropping the image to be square, it

is resized to 286 × 286. The total number of seconds and

frames for each video of the constructed dataset is shown in

the Table 1.

3.2. Experiment setting

We select 100 continuous images from 120 continuous

images of the dataset for data augmentation. Then we ran-

domly crop an area of image size 286 × 286 to 256 × 256,

then resize to 64 × 64. SE extracts the characteristics of

temporal change by inputting four seconds of sound. After

that, learning is performed on the part corresponding to 100
continuous images. In this paper, we generated a video with

image size 64× 64, frame sampling rate 29.97 [fps], sound

Table 1. Details of the datasets used in our experiment.

Mouth Hand Fireworks Sea

Seconds 912 2,352 960 5,280

Frames 109,440 282,240 115,200 633,600

sampling rate 44, 100 [Hz]. The learning was conducted on

a computer with an Intel Core i7-5930K 3.50 GHz CPU,

NVIDIA GTX TITAN X GPU, and 64 GB of RAM. Dur-

ing training, the weight of the loss function is λadv-I = 1.0,

λadv-V = 1.0, respectively. We used ADAM [5] for opti-

mization, set the initial learning rate to 0.0002, β1 = 0.5,

β2 = 0.999. The batch size is two.

4. Results and Discussion

The Figure 2 shows the results of the video of hu-

man mouth, human hands, fireworks and sea waves. In

this paper, the amplitude of the sound is normalized to

[−1.0,+1.0]. The input image is a green frame. The gen-

erated video is shown every 20 frames with orange frame.

The original video image corresponding to each frame is a

red frame. The input sound is recorded in the original video.

As shown in Figure 2-(a), the generated mouth images look

similar to that of the original video. Although the method

of Suwajanakorn et al. [10] requires key points to generate

a video from speech, the proposed method archived to gen-

erate a video of the mouth moving without designing key

points. In addition, it is possible to generate images that

reflect the appearance of the face and background of the in-

put image as well as the mouth part. We confirm that the

proposed method can be applied to small movements of the

mouth, which is an area that emits sound. As shown in Fig-

ure 2-(b), the arms are generated to correspond to the mo-

tion of the original video, but the yellow color of the input

image can not be maintained. It is considered that the cre-

ated dataset did not contain enough clothes colors for learn-

ing. Unlike the human mouth or hands, we use fireworks

and sea waves as examples of targets for which it is diffi-

cult to design key points. Fireworks is a partial change of

the image, whereas the sea is a whole object of the change.

The result of fireworks (Figure 2-(c)) shows that the gener-

ated fireworks light is delayed by 20 to 40 frames compared

to the original video. Not only the brightness but also the

shape of the fireworks changes. From the result of the sea

(Figure 2-(d)), it can be seen that the proposed method is

generating white waves in the same section (t ∈ [20, 80])
as the original video. The generated video shows that the

white waves contained in the input image disappear as the

sound gets smaller (t ≥ 100).

5. Conclusion

In this paper, we proposed a method to generate a video

from a single image and a few seconds of sound without key
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Figure 2. Comparison of generated video and original video for

input image and input sound.

points. Since it is not necessary to define key points for each

object, learning can be performed for each object simply by

changing the dataset. In order to verify the effectiveness of

our proposed method, experiments were conducted on four

types of objects. Our experimental results show that it is

difficult to generate a realistic video when the moving part

according to the sound is large or when the motion is not

uniquely determined for the sound. Extension to the case

where the object moves largely from the input image is a fu-

ture task. In the proposed method, a frame is generated one

by one from the corresponding feature of temporal change

of sound and the input image. In this case, the relationship

between the generated image and the previous image can

not be taken into consideration. We consider that referring

recursively to the previous frame information makes it ro-

bust.
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